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The inflammatory response is an immune defense engaged immediately after injury or infection. 

Chronic inflammation can be deleterious for various health outcomes and is characterized by 

high levels of pro-inflammatory markers such as C-reactive protein (CRP), cytokines interleukin 

6 (IL-6), and tumor necrosis factor alpha (TNF-α). A large body of research demonstrates these 

inflammatory markers are responsive to stress and quality of social relationships throughout the 

lifespan. For example, the quality of the early parental bond predicts various health outcomes 

and may be driven by changes in immune function. Epigenetic processes, such as DNA 

methylation, may be one mechanism by which early social experiences shape immune 

functioning. The present study used a monozygotic twin difference design to assess if primary 

caregiver emotional availability at 1 year and 2.5 years predicted immune gene methylation at 8 

years of age. Further, we assessed if inflammation gene methylation was related to general health 

problems (e.g. infections, allergies, etc.). We found that parental emotional availability at 1 year, 

but not 2.5 years, was related to methylation of various immune genes in monozygotic twins. 

Furthermore, twin pairs discordant in health problems have more difference in immune gene 

methylation compared to twin pairs concordant for health problems, suggesting that methylation 

of immune genes may have functional consequences for general health. These results suggest 

that the emotional component of attachment quality during infancy contributes to immune 

epigenetic profiles in childhood, which may influence general health.  

 

 

 

 

 



Introduction 

The inflammatory response is an immune defense engaged immediately after injury or 

infection. While inflammation is a necessary process, chronic inflammation can be deleterious to 

health. Chronic inflammation is characterized by high levels of pro-inflammatory markers such 

as C-reactive protein (CRP), cytokines interleukin 6 (IL-6), and tumor necrosis factor alpha 

(TNF-α)1. Markers of chronic inflammation are associated with various deleterious health 

conditions throughout development. For example, obesity indices such as body mass index 

(BMI) and adiposity are consistently correlated with increases in circulating levels of IL-6 and 

CRP2–4. Higher CRP is also associated with increased sensitivity to viral infections in children, 

and lower levels of self-reported general health in adulthood5,6. Elevated levels of IL-6 and CRP 

also predict the development of type 2 diabetes, and are related to several cardiovascular risk 

factors and certain cancers7–10. Later in life, higher circulating levels of IL-6, TNF-α, and CRP in 

CSF and plasma are associated with Alzheimer’s and Parkinson’s disease11,12. Importantly, much 

research demonstrates these inflammatory markers are responsive to early life trauma13. 

A large body of literature suggests that social experiences, such as stress and parental 

attachment, during childhood program immune system functioning throughout life. For example, 

retrospective reports of childhood trauma and maltreatment are related to immune functioning in 

adulthood, such as high sensitivity CRP and higher IL-6 and TNF-α 13–19 A recent meta-analysis 

including a sample of 16, 870 individuals for CRP, 3,751 individuals for IL-6, and 881 

individuals for TNF-α showed that individuals exposed to childhood trauma had significantly 

elevated baseline peripheral levels of all three inflammation markers20. Since increased 

inflammation is a risk factor for various physical and mental disorders, childhood trauma can be 



conceptualized as a subtle effect that is likely to have a significant impact on physical and mental 

health. 

In addition to trauma, an important aspect of childhood social experience is parent-child 

attachment. In the first year of life, children form primary attachments to their primary caregivers 

who provide them protection and care essential to their survival21. A child classified as securely 

attached uses her parent as a safe haven during times of distress and as a secure base from which 

to explore the environment when not distressed22. Attachment quality in childhood is highly 

predictive of interpersonal relationship quality in adulthood, and both are consistently associated 

with physical health and mortality23–25. Further, a groundbreaking study following participants 

from infancy to age 32 found that insecurely attached infants were more likely to experience an 

inflammation-related illness (e.g., heart disease, diabetes, stroke) as adults, even after controlling 

for other known risk factors26. Conversely, children with secure attachments report fewer 

symptoms of asthma and produce a lower cytokine response after an immune challenge27. High 

maternal warmth, a characteristic often associated with secure attachment, also predicts lower 

levels of IL-6, and buffers the negative effects of early life stress on various stress, cardiac, and 

metabolic pathways28–31. Taken together, this body of research demonstrates that parent-child 

relationships can shape immune functioning throughout development. Still, understanding the 

mechanistic properties that “program” long-term immune function remains an important 

endeavor.  

Epigenetic processes, such as DNA methylation, may be one mechanism by which early 

social experiences shape the molecular biology of inflammatory regulation and by extension 

immune system function and health. Early life stress is related to dysregulation of the slow-

acting neuroendocrine stress response of glucocorticoid secretion, the hypothalamic pituitary 



adrenal (HPA) axis. Accumulating human and animal research suggest that childhood trauma 

alters DNA methylation of HPA genes which leads to dysregulated levels of glucocorticoids32–37. 

HPA and immune function are highly interrelated as glucocorticoids assert both permissive and 

stimulatory effects on the immune system, depending on the specific conditions38. 

Glucocorticoids initially have immunosuppressive and anti-inflammatory functions, however, 

chronic glucocorticoid exposure leads to immune dysregulation, suppressing some immune 

responses while enhancing others39–41. Recent research has also linked early life stress to 

methylation of immune genes. Prenatal maternal stressors like famine, natural disasters, and 

maternal anxiety are associated with lower methylation of numerous immune function genes42–44. 

Early life stressors including foster care and child maltreatment are associated with differential 

methylation of genes in immunity pathways in adulthood45–47. In contrast, positive social 

experiences may also influence immune and HPA gene methylation, for example, child report of 

maternal warmth positively predicted NR3C1 expression in peripheral cells in children aged 10 – 

17 years old48. Others found a supportive family environment during adolescence may buffer 

against the effects of racial discrimination on epigenetic aging in young adulthood49. Together, 

these results make a compelling case that the quality of parental attachment early in life may 

influence immune gene methylation and overall health throughout life. 

Based on this prior research, we hypothesized that the emotional component of the 

attachment relationship, emotional availability, influences inflammation gene methylation and 

general health. Emotional availability can be defined as an individual’s emotional responsiveness 

and attunement to another’s needs and goals50. Importantly, emotional availability is an 

attachment relationship measure more than a parent or child personality measure51,52. Because 

DNA methylation is both genetically driven and reactive to the environment, genetic confounds 



in epigenetic research are important to consider. Causal inferences about parental environment 

on epigenetic measures cannot be established without controlling for genetic influences, usually 

with a family- or twin-based design53. For this reason, we used a monozygotic (MZ) twin 

difference design to control for genetic effects on DNA methylation. Because MZ twins largely 

share the same DNA, any differences in DNA methylation are most likely attributable to 

environmental influences. We tested the association between primary caregiver reported 

emotional availability (EA) at two key points in early development, age 1 and 2.5 years, with 

DNA methylation of the inflammation genes IL6, CRP, and TNF at eight years old. Further, we 

hypothesized that twin pairs discordant in general health would be more different in immune 

gene methylation compared to twins concordant in general health at eight years old.  

Methods 

Sample 

 Participants were recruited from state birth records for a longitudinal twin study 

investigating genetic and environmental influences on childhood health 54,55. We recruited a sub-

sample of monozygotic (MZ) twins (N = 96; 51% male; 50% Non-Hispanic White, 14.6% 

Hispanic/Latinx, 8.3% African American, 4.2% Asian American), Mage = 8.5 years, SD = .45. 

Seventy-one percent of primary caregivers reported currently being married and all were 

mothers. Total household income ranged from $6,400 - $300,000 USD (M = $97,057, SD = 

$64,893) and 21% of families met Federal Medicaid Eligibility based on 2016 standards 

(Arizona Median Household Income = $53,510, US Census Bureau). All study procedures were 

approved by institutional review boards and are in accordance with the Helsinki Declaration of 

1975. 

Emotional Availability 



Primary caregivers completed an abbreviated version of the Emotional Availability Self-

Assessment when the twins were both 1 year (M = 12.5 months, SD = 1.06) and 2.5 years (M = 

2.55 years, SD = 0.08) of age over the phone52. Items were rated on a five-point Likert scale 

ranging from “almost never” to “almost always” and were asked separately for each twin. A 

higher score indicated higher EA in the parent-child relationship. An example item is “Twin A/B 

looks at you and listens to you when you try to talk to him/her.” In our study, Cronbach’s alpha 

was 0.721 and 0.806 at 1 and 2.5 years, respectively.  

General Health Composite 

 A general health composite was computed using items from the parent-reported 

MacArthur Health and Behavior Questionnaire (HBQ)56. Items endorsing asthma, 

chronic/recurrent lung disease, repeated, persistent ear, urinary, respiratory infections, and bad 

allergies requiring doctor visits and frequent medication were summed into one composite of 

health problems. In our sample, the composite had a range of 0-4, with a maximum possible 

range of 0-6. Twin pairs with a difference score of “0” were categorized as “Concordant in 

General Health” and twin pairs with a difference score > 0 were categorized as “Discordant in 

General Health”.  

Methylation 

Buccal cells were collected with Mawi iSWAB DNA collection tubes (Mawi DNA 

Technologies LLC, Hayward, CA) during an eight-year home visit. DNA was extracted with a 

standard isolation kit (Qiagen, Hilden, Germany). Sample yield and purity were assessed 

spectrophotometrically using a NanoDrop ND-1000 (ThermoScientific, Wilmington, DE) and 

using Qubit fluorometric methods. Approximately 500 ng of DNA was treated with sodium 

bisulfite using the EZ-96 DNA Methylation Kit (Zymo Research, Irvine, CA). DNA methylation 



was quantified using the Infinium MethylationEPIC BeadChip run on an Illumina iScanSystem 

(Illumina, San Diego, CA). Raw IDAT files were exported for preprocessing in R with the minfi 

package57. We applied a filter to remove probes located on the sex chromosomes. Data was 

subjected to quality control analyses, which included quantile normalization, checking for sex 

mismatches, and excluding low-intensity samples (p < .01). Three samples did not pass our 

quality control pipeline. Data were normalized and annotated with Illumina CpG site probe 

names. Using the R package EpiDISH (Epigenetic Dissection of Intra-Sample Heterogeneity, 

3.8) RPC method, we included the proportion of estimated epithelial cells as a covariate in our 

statistical models (m = 69%)58,59. Array number was included as a covariate in all analyses to 

control for batch effects. 

 We interrogated candidate genes by identifying probes on the array that were annotated 

to pre-specified genes. The immunity genes we selected were identified by prior associations 

between methylation or expression and stress. We verified that candidate genes are expressed in 

esophagus mucosa tis have functional consequences sue (https://www.gtexportal.org). Average 

beta values were calculated by dividing the methylated probe signal intensity by the sum of 

methylated and unmethylated probe signal intensities. Average beta values range from 0 

(completely unmethylated) to 1 (fully methylated) and provide a quantitative readout of relative 

DNA methylation for each CpG site. The M-value was calculated as the log2 ratio of the 

intensities of methylated probe versus unmethylated probe. An M-value close to 0 indicates a 

similar intensity between the methylated and unmethylated probes, which means the CpG site is 

about half-methylated. Positive M-values indicate that more molecules are methylated than 

unmethylated, while negative M-values mean the opposite60. 

Statistical Analysis  



We used principal components analysis (PCA) to reduce data dimensionality on our 

candidate genes, which had 18-52 associated CpG probes. This procedure allowed us to use gene 

methylation summary statistics to characterize the data and reduce the number of statistical tests 

to avoid Type 1 error. PCA is an established technique that has been used to reduce high-

dimensionality of methylation data32,61–63. PCA projects data into new orthogonal directions 

corresponding to the directions of maximum variance. PCA appropriateness was assessed with 

the Kaiser-Meyer-Olkin Measure of Sampling Adequacy and the Barlett’s Test of Sphericity. All 

PCA models had CpG sites with positive loadings (representing higher methylation) and sites 

with negative loadings (representing lower methylation). We extracted the first component after 

removing all sites with loading values between -0.3 and 0.3. Component scores were computed 

as the raw CpG M-values weighted by the factor loadings. M-values were used for methylation 

analysis as has been recommended (e.g. reduces homoscedasticity). 

MZ twin difference scores were computed from methylation components, EA 

composites, and general health composites. We used linear multiple regression analysis 

controlling for sex, methylation array, and cell count. Differences in EA were used as predictor 

variables and differences in methylation and were used as dependent variables. We report the 

standardized beta value for all regression results with the p and corresponding FDR corrected p 

values. We used independent samples t-test to compare methylation differences between twin 

pairs discordant in general health (n = 7 pairs) and concordant in general health (n = 29 pairs). 

All analyses were conducted in SPSS 25. For all variables, > 3 standard deviations from the 

mean were considered outliers and dropped from the analysis. For all variables, 0 – 4 outliers 

were removed. 

Results 



EA 

Intra-twin EA composites were correlated at 1 year (r = 0.95, p < .001) with 47% of 

twins with a difference score > zero. At 2.5 years, intra-twin EA composites were correlated  (r = 

0.93, p < .001) with 70% of twins with a difference score > zero (Table 1).  EA at 12 and 30 

months are significantly correlated (r = .49, p = < 0.001). 

Principal components analyses 

 All PCA eigenvalues and variance explained are reported in Table 2. For all analyses, 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy ≥ .80, indicating data was suited for factor 

analysis. For all analyses, Barlett’s Test of Sphericity was significant at p ≤.001, indicating that 

the observed correlation matrix was not likely observed by chance. The loadings and site 

identifiers for all genes of interest are reported in Supplementary Tables. Positive loadings 

indicate sites that have more methylation with EA whereas negative loadings indicate sites that 

have less methylation with EA. 

Associations between emotional availability and immune gene methylation 

 Using FDR correction and multiple linear regression controlling for sex, array, and cell 

count we found MZ differences in EA at 1 year predicted differences in the methylation of IL6 (β 

= 1.423, p = 0.046), and TNF (β = 1.736, p = 0.046), but not CRP (β = 2.145, p = 0.121; Table 

3). Differences in EA at 2.5 years did not predict differences in methylation of any immune gene 

tested (all ps > 0.05; Table 3).  

General health, EA, and immune gene methylation 

 Twin pairs discordant in general health had a significantly larger difference in EA at 1 

year compared to twin pairs concordant in general health (t(28) = -2.547, p = 0.017; Table 4). 

Difference in EA at 2.5 years was not significantly different between groups. 



 After FDR correction, twin pairs discordant in general health had larger differences in the 

methylation of IL6 (t(30) = -2.640, p = 0.027) and CRP (t(31) = -2.494, p = 0.027 but not TNF; 

Figure 1). Cohen’s d effect sizes for all t-tests are reported (Table 4). 

Discussion 

 This study found that parental EA at 1 year, but not 2.5 years, is related to methylation of 

IL6 and TNF but not CRP in middle childhood using a MZ twin difference design. Furthermore, 

twin pairs discordant in health problems have more difference in IL6 and CRP gene methylation 

compared to twin pairs concordant for health problems, suggesting that methylation of 

inflammation genes may have functional consequences for health. These findings are especially 

important because there is a substantial body of literature describing the association between 

inflammatory biomarkers and negative emotional factors in childhood (e.g., abuse and neglect)20. 

However, less is known about the relationship between attachment and immune function. 

Further, the burgeoning field of epigenetics has largely focused on detrimental life events and 

disease vulnerability without much attention to measures that include positive social experiences 

promoting health. Our results add to this literature suggesting that attachment to the primary 

caregiver may shape health through epigenetic regulation of immune activity.  

 These findings converge with prior studies linking early social experiences with health 

outcomes across the lifespan. It has long been known that children raised in high conflict 

families that are low in emotional warmth and parental involvement are at risk for emotional and 

behavioral problems throughout life64. More recently, mounting evidence suggests that these 

early social experiences also play a role in physical health issues such as metabolic disorders. For 

example, the well-known Adverse Childhood Experiences (ACE) Study with more than 17,000 

adults found that rates of cardiovascular disease, autoimmune disorders, and premature death 



were 1.5 - 2.0 times higher among respondents who were exposed to familial violence, abuse, 

and neglect as children than among those who were not65–67. More specifically, much research 

suggests that insecure parental attachment in infancy and early childhood has the potential to 

impair physical health throughout the lifespan68. Several studies suggest that the pathway from 

unfavorable circumstances in childhood to increased disease risk is through increased 

inflammatory activity14,69. Our findings extend this prior research by revealing a mechanistic 

insight such that the emotional availability component of attachment may shape immune 

function and subsequent health through epigenetic processes.  Importantly, an emerging body of 

evidence links epigenetic mechanisms in asthma, inflammation, and lung-disease, further 

offering support for the functional consequences of epigenetic modifications arising from 

parental care70–72.  Because we used the MZ twin difference design, which controls for genetic 

confounds, we can say with more confidence that the relationship we found between the 

attachment relationship and child health is environmentally driven.  

 Much evidence supports the basic tenets of the prevailing hypothesis that harsh early-life 

family climates engender a dysregulated glucocorticoid response to stress and proinflammatory 

phenotypes via desensitization or down regulation of the glucocorticoid receptor16,69,73. Our 

results add to this model the possibility that early attachment relationships contribute to later 

immune function through epigenetic modifications of inflammation genes as well. However, it is 

currently unknown how methylation levels respond to early psychosocial cues. Because the 

quality of the attachment relationship influences diurnal cortisol and stress reactivity, the cortisol 

bound glucocorticoid receptor may shape DNA methylation through action as a transcription 

factor for thousands of genes, including DNA methyltransferase (DNMT)46,74–77. Accordingly, 

childhood social cues, such as the quality of the attachment relationship, may shape methylation 



patterns of inflammation genes through influencing cortisol patterns and subsequent cortisol 

bound GR activity.  

 It is unclear why we found EA at one year but not 2.5 years was associated with immune 

methylation and childhood health. Perhaps this pattern of results is due to a sensitive period of 

immune epigenetic malleability during infancy. Work in developmental neuroscience indicates 

that prenatal and postnatal brain development has heightened sensitivity to environmental 

influences78. During these periods of increased plasticity, the environment plays a major role in 

shaping long-term brain structure and function, and subsequent behavior79. More recently, 

neuroepigenetic studies in rodent and human studies demonstrate that one mechanism of long-

term environmental effects is through altering the epigenome and downstream expression of 

proteins underlying brain structure and function, especially with the HPA system80. The current 

results suggest that immune genes may share a similar epigenetic sensitive period as HPA genes.  

Because the immune system gradually matures and “acquires memory” by exposures during 

infancy81,  immune epigenetic programming early in life seems plausible. This would align well 

with the established knowledge that early life stress influences long-term HPA and immune 

function.  The current results suggest the immune epigenetic sensitive period may be short lived 

and that the epigenetic profile may in turn confer either risk or resilience to later immune issues 

such as asthma and infections. However, these effects will need to be replicated in a larger study. 

Researchers have long been interested in how childhood psychosocial factors affect long-

term immune function82. More recently, studies have assessed epigenetic mechanistic pathways 

between negative childhood experiences and immune function. For example, prenatal stressors 

like famine, natural disasters, and maternal anxiety along with early life stressors including foster 

care and child maltreatment are associated with differential methylation of genes in immunity 



pathways42–46. It is then interesting to extend this literature to assessing the quality of the 

attachment relationship on the immune epigenome. Recent literature reflects a growing interest 

on the potential impact of relationship quality and secure attachment on health, however this 

work has primarily focused on adult relationships83–86, with one exception26. We contribute 

findings suggesting that parental emotional availability may shape immune epigenetics and 

general health in childhood. This is of particular interest in the context of disorders with a later 

onset in life, such as heart disease and Alzheimer’s disease, which have been related to chronic 

inflammation87,88. Thus, our findings warrant an increased focus on secure attachment and 

beneficial early social relationships in the context of epigenetics and health across the lifespan. 

 While we are one of the first to assess the influence of infant-parent relationship quality 

on immune gene methylation and general health, there are limitations to consider. For example, 

despite our robust findings, our sample size is relatively small. However, in the context of MZ 

twin difference designs our sample size is well within the typical range89–92, but replications in 

larger nationally representative samples are necessary to confirm our conclusions. We also could 

not verify the parent-reported general health composite with medical records, although these 

types of health checklists have been shown to be valid in previous studies56. Because we were 

unable to obtain T cells, we assessed DNA methylation of inflammation genes in buccal cells. 

While future studies need to replicate our findings in isolated T cell populations, work before us 

has demonstrated prenatal stress had similar effects on DNA methylation of immune genes 

across T cells, peripheral blood mononuclear cells, and saliva cells44. Even with these 

limitations, we observed moderate effect sizes despite the seven-year gap between attachment 

assessments and physical health and methylation measures44. Thus, using buccal swabs for DNA 



methylation studies holds great promise for large-scale studies in which obtaining T cells is 

rarely feasible, particularly when collecting from young children. 

 In summary, quality of attachment relationships may influence mental and physical 

health throughout the lifespan. We present results suggesting that DNA methylation of 

inflammation genes may be responsive to infant attachment. Further, our results suggest 

inflammation epigenetics have functional consequences for health. Lastly, because we used a 

twin difference design, we can be more confident that these relationships are environmentally 

driven and not genetically confounded. Given substantial evidence that childhood psychosocial 

factors impact immune function and risk for detrimental health outcomes, understanding how 

experiences “get under the skin” remains an important inquiry for health. Our results add to a 

growing literature supporting an association between early social experiences, immune gene 

epigenetics, and general health. 

 

 

 

 

 

 

 

 

 

 

 



Figure 1. Intra-pair differences of emotional availability and inflammation gene DNA 

methylation in monozygotic (MZ) twins.  We plot comparisons between twins concordant and 

discordant in general health. This data demonstrates twins discordant in health are more different 

in parental emotional availability (EA) from 1 year old but not 2.5 years old. The data also shows 

twins discordant in health are more different in methylation of IL-6 and CRP but not TNF 

compared to twins concordant in health (* FDR corrected p < 0.05).  
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EA r p
1 year 0.950 < 0.001
2.5 years 0.926 < 0.001

Gene 
Methylation r p
IL6 0.407 0.006
CRP 0.299 0.006
TNF 0.500 0.001

Table 1. Intra-twin Correlations



IL6 52 28 9.537 34.06
CRP 18 9 2.534 28.16
TNF 27 22 11.193 50.88

Table 2. Immune Gene Methylation PCA Results

Gene CpG Probes
Component 

Probes 
Eigenvalue % Variance



β SE p FDR p β SE p FDR p
IL6 1.423# 0.588 0.022 0.046 1.019# 0.546 0.075 0.224

CRP 2.145# 1.342 0.121 0.121 0.740# 1.286 0.571 0.571
TNF 1.736 0.762 0.031 0.046 0.718 0.740 0.342 0.512

Table 3. Standardized Beta Estimates for Regression Analyses

Gene
Emotional Availability at 1 year Emotional Availability at 2.5 years

FDR: false discovery rate; # = Cell Count < .05



Table 4. Twins Discordant in Health are More Different in Immune Gene Methylation

Difference Scores M SD M SD t p FDR p Cohen' d
EA 1 year 0.134 0.121 0.051 0.055 -2.547 0.017 - 0.88
EA 2.5 years 0.101 0.137 0.108 0.134 0.111 0.912 - 0.05
IL6 1.211 0.925 0.550 0.442 -2.640 0.013 0.027 0.911
CRP 0.999 0.614 0.505 0.422 -2.494 0.018 0.027 0.937
TNF 0.833 0.642 0.554 0.326 -1.593 0.122 0.122 0.548

Twin-Pairs Discordant in 
General Health

Twin-Pairs Concordant in 
General Health

t -test Effect Size
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